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ABSTRACT

Motivation: Metabolomics is a rapidly evolving field that holds
promise to provide insights into genotype–phenotype relationships
in cancers, diabetes and other complex diseases. One of the major
informatics challenges is providing tools that link metabolite data with
other types of high-throughput molecular data (e.g. transcriptomics,
proteomics), and incorporate prior knowledge of pathways and
molecular interactions.
Results: We describe a new, substantially redesigned version of
our tool Metscape that allows users to enter experimental data for
metabolites, genes and pathways and display them in the context of
relevant metabolic networks. Metscape 2 uses an internal relational
database that integrates data from KEGG and EHMN databases. The
new version of the tool allows users to identify enriched pathways
from expression profiling data, build and analyze the networks of
genes and metabolites, and visualize changes in the gene/metabolite
data. We demonstrate the applications of Metscape to annotate
molecular pathways for human and mouse metabolites implicated in
the pathogenesis of sepsis-induced acute lung injury, for the analysis
of gene expression and metabolite data from pancreatic ductal
adenocarcinoma, and for identification of the candidate metabolites
involved in cancer and inflammation.
Availability: Metscape is part of the National Institutes of Health-
supported National Center for Integrative Biomedical Informatics
(NCIBI) suite of tools, freely available at http://metscape.ncibi.org.
It can be downloaded from http://cytoscape.org or installed via
Cytoscape plugin manager.
Contact: metscape-help@umich.edu; akarnovs@umich.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Large-scale omics studies have been successful at revealing
differences in gene expression, protein and metabolite abundance
and post-translational protein modifications, thus providing different
level views of the molecular processes that lead to disease
phenotypes. Molecular pathway databases and metabolic maps
that contain computationally predicted and literature-derived
information provide a path to connecting these views together.
While many tools have been developed for the analysis of gene
expression and proteomics data, to date there are few that allow
the user to analyze metabolomics data and to link them with other
omics data. High-quality genome scale metabolic reconstructions
represent a critical component in developing such a tool. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) was one
of the first database to provide information about biological
pathways in conjunction with gene data from a range of different
organisms (Kanehisa, 2006). Over 50 organism-specific metabolic
reconstructions were published, providing excellent sources of
information about metabolic pathways, genes encoding metabolic
enzymes, reactions catalyzed by them and the compounds that
participate in these reactions (Duarte et al., 2007; Hao et al., 2010;
Ma et al., 2007; Romero et al., 2005; Sigurdsson et al., 2010).

In addition to the information about the components of metabolic
pathways, databases like KEGG, BioCyc and SMPD provide
data visualization in the form of individual pathway charts or
the overall view of metabolic pathways (Frolkis et al., 2010;
Kanehisa, 2006; Romero et al., 2005). The pathway charts are
actively used by many researchers to help interpret their data,
formulate new hypotheses and present the results. However, as the
data input volume and complexity grow, such manual analysis is
becoming increasingly difficult. Efforts have been made to visualize
the experimental data over the static pathways charts (Garcia-
Alcalde et al., 2011; Paley and Karp, 2006) or make these charts
interactive (Junker et al., 2006; Klukas and Schreiber, 2010). One
recently developed tool, Paintomics, provides the ability to load
gene expression and metabolite measurements and visualize them
over KEGG pathway maps (Garcia-Alcalde et al., 2011). A more
interactive tool, Vanted, has been developed for the exploration
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of experimental metabolomics data in the context of metabolic
pathways (Junker et al., 2006; Klukas and Schreiber, 2010).
Although developed for plants, it can be used for any data: users
can load KEGG maps or build their own pathways. The recently
published metabolomics pathways analysis tool MetPA also allows
visualization of experimental data in the context of metabolic
pathways (Xia and Wishart, 2010) and uses several statistical
methods to perform pathway enrichment analysis conceptually
similar to gene set enrichment analysis methods (Dennis et al., 2003;
Draghici et al., 2007; Subramanian et al., 2005).

Pathways analysis and visualization has become an integral part
of biological interpretation of omics experiments. However, one of
the inherent limitations of pathway-based visualization is that both
genes and metabolites can be part of multiple pathways. In order
to understand the overall effect of an altered gene or metabolite,
the user must go through multiple pathways and understand the
connections among them. An alternative is building a network with
genes/metabolites as nodes, where each node is unique and nodes
from multiple pathways can be linked together. Such networks
provide an easy way to connect multiple pathways and build
gene/compound centric maps enabling quick data exploration and
logical well-informed hypothesis generation.

We present here a new, substantially updated version of our
previously developed tool Metscape (Gao et al., 2010) that provides
functionality for creating pathway and network level views and
analyzing several types of experimental data. Metscape is a plugin
for Cytoscape (Shannon et al., 2003), a widely used open-source
network analysis and visualization tool. It allows users to upload lists
of metabolites and genes with experimental measurements; identify
related genes, metabolites, reactions, enzymes and pathways; build
and analyze the networks of genes and metabolites; and visualize the
changes in experimental data over time or experimental conditions.
The tool also allows users to identify and visualize enriched
pathways from expression profiling data.

We demonstrate the utility of Metscape 2 with three examples.
The first example involves using Metscape to analyze the 1H-NMR
unbiased metabolomics data from patients with sepsis-induced acute
lung injury (ALI) and from a mouse model of ALI. The second
describes the analysis of metabolite and gene expression data from
human pancreatic adenocarcinoma. In the third example, we show
how Metscape can be used to guide the search for metabolites with
potential involvement in cancer and inflammation.

2 METHODS
The architecture of Metscape 2 has been completely redesigned compared
with Metscape 1 (Gao et al., 2010) and a number of new features have been
added. Metscape 2 is based on standard three-tier architecture described in
detail in Supplementary Material.

The Metscape plugin supports two types of queries. The user can: (i)
supply a list of genes and/or compounds; or (ii) select one of the canonical
metabolic pathways. The query is handed off to the Metabws service
that returns the list of gene–enzyme–reaction–compound relations, which
can then be viewed as: (i) a compound–reaction–enzyme–gene (CREG)
network, (ii) a compound–reaction (CR) network, (iii) a compound–gene
(CG) network or (iv) a compound (C) network.

Metscape 2 uses human metabolic networks. Moreover, it automatically
performs mouse/rat to human homology mapping. This is done by
the homolog mapping service that maps rat and mouse genes to their
corresponding human homologs. All other services use human data.

In summary, Metscape 2 enables the use of both gene expression data and
metabolite data as experimental data sources, provides access to the gene set
enrichment tool LRpath and has the ability to load user supplied concepts.
Animation of time series compound data is supported with an updated user
interface.

3 RESULTS
First, we describe the features of Metscape 2. Next we demonstrate
several potential workflows with three applications. We show that
Metscape was useful in visualizing the data, linking them to prior
knowledge of metabolic pathways and helpful for generating new
hypotheses, thereby contributing to the overall understanding of the
underlying biological processes.

3.1 Metscape 2 user interface features and workflows
3.1.1 User interface features Metscape is a tool for interactive
exploration and visualization of experimental metabolomics and
gene expression data in the context of human metabolic networks.
In addition to the new plugin architecture, the Metscape 2 interface
was significantly changed compared with Metscape 1 (Gao et al.,
2010) and many new features were added. The most prominent new
feature is the ability to enter gene expression data and examine them
in the context of metabolic networks. Two most common types of
outputs from microarray or RNA-Seq experiments are (i) lists of
genes that are differentially expressed under certain experimental
conditions and (ii) lists of pathways, Gene Ontology terms and
other concepts that are significantly enriched with genes from an
experimental dataset. Metscape 2 allows users to enter both types
of data.

In addition to the C and CR network graphs represented in
Metscape 1 (named according to the types of nodes shown in a
network), we added two types of network graphs—CREG and CG.
In CREG graphs, metabolites (or compounds), reactions, enzymes
and genes are represented as nodes and the relationships among them
are represented as edges; the CG graphs have two types of nodes—
compounds and genes, and the edges represent both reactions and
enzymes (Supplementary Fig. S1).

The main objective of visualizing experimental data in biological
networks is to provide the context that enables data interpretation
and leads to generation of new hypotheses. This can be facilitated by
providing annotations and links to various data sources. Metscape
has several ways to display additional information for the nodes
and edges in a given network. First, additional information can
be displayed in the data panel at the bottom of the screen by
selecting appropriate node and edge attributes, e.g. compound name,
gene description, reaction equation (see Supplementary Table S1
for the complete list of attributes). Second, by double clicking
on any node or edge, users can display additional information in
the Results panel on the right side of the screen (Supplementary
Fig. S3). The results panel contains information about compounds,
reactions, enzymes, genes, links to external databases such as
PubChem and KEGG and to the literature via the Metab2Mesh
tool (http:/metab2mesh.ncibi.org, National Center for Integrative
Biomedical Informatics). We illustrate the use of many of these
features in the three example workflows below.

3.1.2 Metscape 2 workflows A Metscape session can be started
by loading a list of compounds with or without experimental
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Table 1. Comparison of Metscape to selected metabolic pathway analysis software

Feature Metscape Vanted MetPA Omics viewer Paintomics
Connected to a pathway database? Yes No Yes Yes Yes
Can import experimental metabolomics data? Yes Yes Yes Yes Yes
Can import experimental gene expression data? Yes Yes No Yes Yes
Interactive? Yes Yes Yes No No
Single pathway view? Yes Yes Yes Yes Yes
Multiple pathways view? Yes No No Yes No
Network view? Yes No No No No
Search by ID/name Yes N/A Yes Yes Yes
Nodes redundant? No Yes Yes Yes Yes
Supports building custom pathways? No Yes No No No
Access to network analysis and statistical analysis tools? Yesa Yes Yes No No

aVia other Cytoscape plugins.

measurements. Users can upload a file, directly enter KEGG
compound IDs or copy and paste a list of IDs from a clipboard.
Once the compounds have been entered, Metscape will attempt
to map them to internal IDs. If any of the input data were not
mapped, their IDs will be reported in the Missing Data window
(Supplementary Fig. S2c). At the next step, the user can select
the network type and either choose to build the network from
input data, or select a pathway from the dropdown list, and then
proceed to build the network. The resulting network graph will
include the query compounds plus any compounds, reactions,
enzymes and genes (depending on the network type selected) that
participate in the same reactions as the query compounds. If a
pathway was selected, the network graph for that pathway will
be displayed with experimental data visualized for the relevant
nodes. If a C network graph is selected, the edges will be drawn
between ‘seed’ compounds and their neighboring compounds.
In addition to standard Cytoscape operations, Metscape offers
several extra features, including building subnetworks, pathways
filtering, expanding a currently displayed network and displaying
additional information for a set of selected nodes, as described
above.

Alternatively, the user can start with a list of differentially
expressed genes, a list of enriched concepts or both. The
detailed description of the input file formats is available
from the Metscape web page and Metscape user manual
(http://metscape.ncibi.org/metscape2/help.html). The concept file
can be generated using any previously described gene set enrichment
analysis program such as GSEA (Subramanian et al., 2005) or
LRpath (Sartor et al., 2009) from gene expression data. The user has
an option to do gene set enrichment testing from within Metscape.
If this option is selected, a directional test against KEGG pathways
with default parameters will be performed. LRpath uses logistical
regression to identify the gene sets that are enriched with the query
genes (http://lrpath.ncibi.org).

The third possibility is to load gene and compound data in parallel.
Once the data are loaded, the user can choose one of the four network
types and proceed to build a network. Networks in Metscape are
built according to the following general rules. If only genes are
used as input, then all the enzymes, reactions and compounds that
match those genes are used to build the network. If a concept file
is provided, genes from that file will be used as input. If a concept
file is not provided, all genes from gene file are used as input. In

this case, it is advisable to load a smaller set of genes (e.g. the
most significant differentially expressed genes). If both genes and
compounds are used as input, then only CREG couplings that match
both the input lists are used.

Table 1 compares features of Metscape 2 with four other programs
for the analysis and visualization of experimental data in the context
of metabolic networks: Vanted (Junker et al., 2006; Klukas and
Schreiber, 2010), MetPA (Xia and Wishart, 2010), Omics viewer
(Paley and Karp, 2006) and Paintomics (Garcia-Alcalde et al.,
2011). Like other programs, Metscape uses node size, color and
border to visualize trends in the experimental data. However, unlike
any other program, Metscape provides an easy way to connect the
experimental genes/compounds into a single network. We illustrate
the Metscape features and workflows in the following sections.

3.2 Metscape analysis of metabolomics data from
sepsis-induced ALI

In a recently published 1H-NMR metabolomics study of sepsis-
induced ALI (Stringer et al., 2011), 40 plasma metabolites
were identified in lipophilic and hydrophilic fractions of each
sample. From these, 28 compounds were mapped to KEGG
IDs. Quantitative analysis revealed the difference in levels of
a number of metabolites including total glutathione, adenosine,
phosphatidylserine and sphingomyelin. These changes reflect
complex pathology and provide evidence for the involvement of
such processes as oxidant stress (glutathione), energy balance
(adenosine), apoptosis (phosphatidylserine) and endothelial barrier
function (sphingomyelin) in sepsis-induced ALI.

Further analysis showed that eight additional compounds changed
significantly [P<0.02, false discovery rate (FDR) <5%] in ALI,
compared with healthy subjects. The file containing the list of KEGG
IDs, fold change and P-values adjusted for multiple comparisons
was loaded into Metscape (Supplementary Table S2). As noted
above, Metscape 2 supports four types of network graphs. We first
created a CREG graph to obtain an overview of all components of
the sepsis-induced ALI network. The resulting network consisted
of two components: (i) a small sphingomyelin subnetwork and
(ii) a large subnetwork that contained the rest of the experimental
compounds. We were able to connect the two components with a
single expand operation by adding the nodes related to the compound
N-acylsphingosine (C00195) (Fig. 1).
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Fig. 1. A fully connected network of ALI metabolites detected in the sepsis-
induced ALI experiment. Metabolites with experimental data are shown in
red. The size of the nodes represents the direction of the change. Red arrows
point to downregulated compounds.

This type of graph also provided a complete list of metabolic
pathways (Supplementary Table S3) and genes related to
experimental metabolites. To examine the data further, we built
a compound network. It consisted of two major subnetworks
combining all statistically significant differentiating compounds.
The first subnetwork included adenosine, phosphatidylserine,
sphingomyelin, triacylglycerol and cholesterol; the second
contained citrate, glutamine, alanine, creatine, succinate,
3-hydroxybutanoate and glutathione. The shortest path between
five compounds in the first subnetwork included the reactions
from three pathways such as glycerophospholipid metabolism,
phosphatidylinositol phosphate metabolism and purine metabolism.

The first subnetwork exemplifies the derangement of lipid
metabolism that occurs in critically ill patients and often results
in hypocholesterolemia which in turn may be associated with
illness severity and a poor prognosis (Chiarla et al., 2004; Dunham
and Chirichella, 2011). The changes in metabolites associated
with the glycerophospholipid and phosphatidylinositol phosphate
metabolism (e.g. sphingomyelin, phosphatidylserine) and modest
increase in total glycerolphospholipids in ALI patients compared
with healthy controls (1.1 versus 0.88, P=0.135) are likely related
to severe inflammation accompanied by cellular injury and apoptosis
characteristic of sepsis-induced ALI (Kagan et al., 2004; Tyurina
et al., 2010). These inflammatory processes also involve oxidant
stress, which contributes to the loss of antioxidant homeostasis.
This is evidenced by the metabolites of the second subnetwork that
is associated with glutathione (a potent antioxidant) and glutamine
(an abundant amino acid and precursor of glutathione). In acute
oxidant stress, reduced glutathione (GSH) is rapidly converted to its
oxidized form (GSSG). Since 1H-NMR cannot differentiate GSSG
and GSH, our finding of increased glutathione is most likely due to
GSSG, which increases in sepsis and oxidant stress (Andresen et al.,
2008; Biswas and Rahman, 2009). The biological consequence of

Fig. 2. Adenosine is elevated in both human ALI and a mouse model of
ALI. (A) Human data are plasma from healthy controls (n=6) and sepsis-
induced ALI (n=13), P=0.02; mouse data are lung tissue obtained from
untreated controls (n=4) and 6 h after IL-1β+TNF-α-induced lung injury
(n=4), P=0.01. Data are mean+SEM. (B) CREG network for adenosine
(shown as red hexagon).

increased GSSG includes activation of cellular apoptotic pathways
and subsequent cell death.

We further demonstrate the utility of Metscape for integrating
metabolomics results from human and model organisms. As
mentioned above, Metscape can map mouse and rat data to human
metabolic networks though homolog mapping. The experimental
model of IL-1-β+TNF-α-induced lung injury was previously
employed to assay NMR-detectable metabolites in lung tissue
(Serkova et al., 2008). Principal component analysis (PCA) showed
a derangement in energy homeostasis. Subsequent analysis of these
data using quantitative metabolomics revealed several metabolites
that were different between control and IL-1-β+ TNF-α-treated
mice. One of these is adenosine, which was increased in human
ALI plasma samples (Fig. 2A). Adenosine is a nucleotide composed
of adenine linked to ribose and is a major molecular; component of
ADP, AMP and ATP, as well as nucleic acids. Its elevation in sepsis-
induced ALI is most likely due to cellular stress-induced release of
ATP that is rapidly metabolized by ectonucleotidases (Eckle et al.,
2007).

Initially, increased extracellular adenosine has a protective role
in the lungs because it improves barrier function, enhances alveolar
fluid clearance and reduces inflammation (Kreindler and Shapiro,
2007; Lucas et al., 2009; Matthay, 2002). Conversely, adenosine
also orchestrates signaling that leads to deterioration of the lungs.
This includes the promotion of angiogenesis, enhanced production of
matrix proteins and propagation of inflammation (Zhou et al., 2009).
Collectively, these remodeling processes could lead to long-term
lung dysfunction and disease such as pulmonary fibrosis.

Two key enzymes that regulate adenosine production and
metabolism are adenosine deaminase (EC.3.5.4.4) and ecto-5′-
nucleotidase (EC3.1.3.5). Adenosine deaminase converts adenosine
to inosine (Fig. 2B). Levels of both enzymes are altered in patients
with lung inflammation. The expression of ADA1, ADA2 and CD73,
the genes that encode these two enzymes, is also altered in patients
with chronic lung disease. Building Metscape metabolic network for
the mouse data produced a list of mouse genes encoding metabolic
enzymes related to adenosine and other metabolites of interest
that can be investigated in further experiments (Supplementary
Table S4).
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3.3 Metscape analysis of the metabolomics and gene
expression data from human pancreatic ductal
adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest
cancers, primarily due to poor treatment response, which can
mostly be attributed to tumor heterogeneity. A number of
expression profiling studies of whole tissue and microdissected
PDAC performed over the last decade have contributed to our
understanding of the molecular nature of this disease. Several recent
large-scale studies of micro dissected and whole tissue samples
helped to delineate the differences in therapeutic response and
clinical outcome of different PDA subtypes (Badea et al., 2008;
Collisson et al., 2011). Badea et al. profiled paired tumor and normal
pancreatic tissue samples from 36 PDAC patients using Affymetrix
U133 plus 2.0 whole-genome microarray and identified 239 genes
that were upregulated in tumor samples (P<10−14 and fold change
>2). Further analysis of these genes showed the enrichment in
TGF-β target genes and genes involved in epithelial–mesenchymal
transition.

Expression profiling studies contributed significantly to the
understanding of underlying molecular mechanisms of pancreatic
cancer and resulted in improved classification of the tumor subtypes.
However, the lack of early diagnostic markers still remains a
problem. Proteomics and metabolomics have the potential to provide
additional biological insight for solving this problem. Lucal et al.
found elevated levels of purine nucleoside phosphorylase and
its metabolites (both products and substrates) in tumor tissue,
pancreatic juice and blood of tumor patients (Lucas et al., 2009).
There are several metabolomics studies in human and animal models
of PDAC (Bathe et al., 2011; Fang et al., 2007; Ouyang et al.,
2011; Urayama et al., 2010). The LC–MS study by Urayama
et al. identified a number of potential differentiating metabolites
including several amino acids (N-methylalanine, lysine, glutamine,
phenylalanine), arachidonic acid, several lipids [lysoPC (18:2),
PC (34:2), PE (26:0)] and bile acids (tauroursodeoxycholic acid,
taurocholic acid, deoxycholylglycine and cholylglycine).

In these published studies, no attempts were made to link
any of the metabolomics findings with the results of expression
profiling studies of PDAC. Metscape represents the next generation
of programs that enable integration and comparisons of different
types of experimental data. Here we demonstrate the utility of
Metscape for bringing together gene expression and metabolite data
and deriving a better understanding of the underlying metabolic
processes associated with pancreatic cancer.

Gene expression data from 36 paired tumor and normal pancreatic
tissue samples obtained by Badea et al. (2008) were downloaded
from the GEO database (GSE15471). Previously published analysis
of these data involved identification of differentially expressed
genes with rather stringent cutoff (P<9×10−12) and enrichment
analysis with L2L, a tool that compares the user submitted list to
the predefined gene sets (e.g. gene lists from other experiments, GO
categories, etc.) (Newman and Weiner, 2005).

Initially, we submitted this dataset to LRpath, which is a
logistic regression-based method and does not require a significance
cutoff. LRpath analysis against GO and KEGG databases revealed
274 enriched gene sets with FDR <0.01 (Supplementary Table
S5). Among the most significant upregulated concepts were GO
categories related to RNA and DNA metabolism, RNA splicing, cell

Fig. 3. Metscape analysis of PDAC gene expression and metabolite data.
(A) Focal adhesion was identified from gene expression data by LRpath
analysis as the most significant concept. Parts of the subnetwork containing
phosphoinositide-3-kinase (PIK3CAand PIK3CB) and phosphatidylinositol-
4-phosphate 5-kinase (PIP5K1C) are shown. Gene node border color
is green if the gene was significant (q<0.05). (B) Arachidonic acid
network. COX, cyclooxygenases; LOX, lipoxygenases; CYP, cytochrome
P450 monooxygenases.

cycle, cell adhesion, regulation of apoptosis, NF-kappaB cascade
protein catabolism and immune response and 11 KEGG pathways,
including ECM-receptor interaction, focal adhesion, small cell lung
cancer, proteasome, cell cycle and B cell receptor signaling. TGF-
β signaling identified in the original publication was confirmed
as one of the upregulated pathway (P=0.01). The downregulated
GO categories included sensory perception of various stimuli,
G-protein signaling, cyclic nucleotide mediated signaling, calcium,
potassium and sodium ion transport, and fatty acid oxidation. The
most significant downregulated pathways were neuroactive ligand–
receptor interaction, taste transduction, calcium signaling pathway,
glycine, serine and threonine metabolism, nitrogen metabolism,
glyoxylate and dicarboxylate metabolism.

To examine the data in metabolic context, the list of Entrez
gene IDs, P-values adjusted for FDR and log fold change values,
the list of metabolites with fold change and P-values identified
by Urayama et al. (2010) and the LRpath results against the
KEGG database were loaded into Metscape and the networks were
created. We first built a CREG network, which resulted in one large
subnetwork with 5429 nodes and a number of smaller subnetworks.
Metscape provides a quick and convenient way to explore large
networks and focus on different data subsets of interest. This can
be achieved by selecting one or more pathways or concepts from
the pathway or concept filter tabs at the bottom of the screen. The
main difference between the two filters is that the concept filter is
populated with concepts from an input concept file and pathway
filter is populated with metabolic pathways from the Metscape
database. Figure 3A shows the subnetwork for focal adhesion,
one of the top enriched KEGG pathways. It contains 15 genes,
9 of which have q<0.01, and 16 compounds. Most genes in
this subnetwork encode kinases and phosphatases that have been
implicated in various cancers, e.g. met proto-oncogene (hepatocyte
growth factor receptor), platelet-derived growth factor receptor beta
(PDGFRB), protein phosphatase 1 (PPP1CA), phosphoinositide-
3-kinase (PIK3CA and PIK3CB) and phosphatidylinositol-4-
phosphate 5-kinase (PIP5K1C). The latter enzyme, PIP5K1C,
phosphorylates phosphatidylinositol 4-phosphate and converts it to
phosphatidylinositol 4,5-bisphosphate. A recent study in Drosophila

377



[10:58 28/1/2012 Bioinformatics-btr661.tex] Page: 378 373–380

A.Karnovsky et al.

showed that an increased level of phosphatidylinositol 4-phosphate
resulted in increased Hedgehog signaling (Yavari et al., 2010).
Phosphatidylinositols (PI) are lipid constituents of the plasma
and organelle membranes. Different phosphorylated versions of
PI have been shown to regulate cytoskeletal organization, signal
transduction, and membrane and protein trafficking (Skwarek
and Boulianne, 2009). This example demonstrates that Metscape
provides a quick way to identify the compounds that are
associated with the metabolic genes of interest. Currently, there
are no experimental metabolomics data for any of the PIs in
PDAC samples; these compounds could be targeted for follow-
up experiments. Metscape also allowed us to examine available
experimental metabolomics data coupled with relevant expression
profiling data for PDAC. Figure 3B shows the network for
arachidonic acid, one of the compounds that were increased in
PDAC plasma samples. Arachidonic acid is a component of
phospholipids. The products of its metabolism, eicosanoids, have
been implicated in various diseases including cancers (Panigrahy
et al., 2010). Three families of enzymes that control the three main
branches of arachidonic acid metabolism belong to cyclooxygenase
(COX), lipoxygenase (LOX) and cytochrome P450 (CYP) families.
Two members of the COX family, PTGS1 and PTGS2, were
upregulated in PDAC samples (q=0.026 and 0.005, respectively),
whereas three of four genes encoding LOX enzymes were
downregulated (q<0.002). Of the 28 genes encoding various CYP
enzymes, the 14 most significant genes (q<0.05) were found to
be downregulated; 8 of these were part of the enriched concept
‘Metabolism of xenobiotics by cytochrome’. Interestingly, most
of the genes encoding phospholipases responsible for releasing
arachidonic acid from phospholipids were also downregulated and
eight of those were also part of the glycine, serine and threonine
metabolism concept. In summary, this analysis suggests that the
increased level of arachidonic acid is not likely to be the result of
increased release from phospholipids. Since genes encoding CYP
and LOX enzymes are downregulated, the decreased activity of these
two branches of arachidonic acid metabolism could be responsible
for the accumulation of this metabolite.

3.4 Building and exploring the network of
inflammation-related metabolites potentially
involved in cancers

One of the documented risk factors for developing cancer is chronic
inflammation. For example, it has been shown that there is a
link between pancreatic adenocarcinoma and chronic pancreatitis
(Dinarello, 2006). Chronic inflammatory disease has the potential
to evolve toward neoplasia. Miron et al. found increased levels
of TNF-α and IL-6 in serum of patients with chronic pancreatitis
and pancreatic adenocarcinoma compared with healthy controls
(Miron et al., 2010). Their results suggested a pathogenic role
for chronic inflammation in pancreatic carcinogenesis. If small
molecule metabolic markers common to cancers and inflammation
are identified, they could potentially be used as early markers of
disease, helping to understand the underlying molecular pathways
and lead to new therapies.

We used Metscape in combination with the previously developed
CentiScape plugin for Cytoscape (Scardoni et al., 2009) to
reconstruct and annotate the metabolic networks, identify related
nodes and pathways and guide our search for metabolites with

Fig. 4. The network of the candidate metabolites and genes involved in both
inflammation and cancers. Only few ‘hub’ genes and metabolites are labeled.

potential involvement in inflammation and cancers. We started by
searching the literature and publicly available HMDB database
(http://hmdb.ca) to generate a list of 83 metabolites involved in
inflammation (Supplementary Table S6). This list was used to
query Metscape and to build a CREG network which resulted
in a large, but not fully connected, network. The smaller
isolated network components were expanded using the Metscape
expand function and a fully connected network graph with 499
nodes and 1400 non-redundant binary interactions was created.
Supplementary Table S7 provides a complete list of pathways for this
network. Notably, these pathways are involved in generating lipid-
derived pro-inflammatory mediators, mainly related to arachidonic
acid metabolism, and in generating intermediates leading to
proinflammatory oxidative stress. Metscape provides two ways to
access the pathway information. In addition to the pathway filter
tab described above, pathways are displayed in the data panel as
attributes of reaction nodes (or reaction edges in C network graphs).

We then used CentiScape to categorize nodes of this network
according to their individual topological relevance. Specifically,
we calculated the centrality indexes (Centroid, Betweenness and
Eccentricity) for all nodes in order to be able to better focus
the analysis on the most important nodes. The genes with the
Centroid and Betweenness centrality scores that exceeded the
network average were extracted and annotated using literature-
derived information and the subset of genes involved both in
inflammation and in cancer development. This subset of genes
was then used to further query Metscape and reconstruct the
corresponding metabolic network (Fig. 4 and Supplementary Tables
S8 and S9). We hypothesize that the resulting network contains
metabolites and genes that are potentially relevant both in cancer
development as well as in inflammation generation. This example
demonstrates that Metscape functionality can easily be enhanced and
expanded by using it in combination with other Cytoscape plugins.

4 DISCUSSION
Visualization of genes, enzymes, metabolites, pathways and their
relationships proved is an important step in biological interpretation
of high-throughput omics experiments and understanding molecular
mechanisms of diseases. The ability to link different types of
biological data and examine them within the same framework
further enhances this understanding. While there is an abundance
of tools for visualizing molecular pathways, few currently offer
the level of interactivity desired by many researchers. We have
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presented a freely available software application, Metscape 2, that
provides the framework for integrative analysis of metabolomics
and gene expression data and facilitates interactive data exploration.
It maps user-submitted data to gene/metabolite concepts stored in
the internal database, retrieves the relationships for the mapped
concepts and generates the network graphs, where experimental data
are highlighted with the number of visual features, including node
color, size and border. One of the important Metscape 2 features is
the ability to generate network graphs using both user-defined sets
of input nodes and the set of canonical metabolic pathways. This
unique feature, together with the ability to link isolated network
graphs by using the expand function, makes Metscape an important
addition to the set of existing visualization tools. Several types of
networks graphs available in Metscape provide different level views
of the data. For example, the CREG networks provide the most
accurate representation of the relationships between compounds,
reactions, enzymes and genes, while CG networks enable a high-
level overview of the data.

Another unique feature of Metscape 2 is the ability to perform
gene set enrichment testing and visualize the enriched concepts in
metabolic networks graphs. The number of reliable high-resolution
gene expression profiling data sets far exceeds those available for
metabolites. Therefore, computational algorithms that attempt to
predict metabolite changes from gene expression or proteomics data
are particularly important (Zelezniak et al., 2010). The Metscape
framework can be easily expanded to accommodate such algorithms
in the future. It also provides a straightforward way to incorporate
other types of data such as flux through reactions.

We have demonstrated the utility of Metscape 2 for analyzing
the unbiased metabolomics data from plasma samples of patients
with sepsis-induced ALI and have shown that the networks created
by Metscape were useful for inferring the relationships between
metabolites, genes and pathways and helpful in generating new
hypotheses that can be tested experimentally. We also showed that
Metscape can be used to analyze gene expression data from PDAC
samples and link them to plasma metabolites from PDAC patients.
The biological interpretation of such datasets is complicated by the
fact that gene expression data were obtained using tumor tissue
while the metabolites were measured in plasma, which represents a
physiological ‘average’of the whole organism. Careful experimental
validation will be required to test our computationally derived
hypotheses. Finally, we demonstrated how Metscape functionality
can be augmented by using one of the previously developed
Cytoscape plugins, CentiScape.
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